The Effectson End-User Query Performance of Incor porating ...
Debreceny, Roger S;Bowen, Paul L

Journal of Information Systems; Spring 2005; 19, 1; ProQuest Central

pg. 43

JOURNAL OF INFORMATION SYSTEMS
Vol. 19, No. 1

Spring 2005

pp. 43-74

The Effects on End-User Query
Performance of Incorporating
Object-Oriented Abstractions in
Database Accounting Systems

Roger S. Debreceny
University of Hawaii

Paul L. Bowen
University of Queensland

ABSTRACT: Object-oriented (OO) advocates assert that concepts such as generali-
zation-specialization hierarchies (GSHs) and abstract data types (ADTs) make infor-
mation systems more usable by increasing the level of abstraction of the data structure.
This study analyzes the effects of GSHs and ADTs on the performance of end-users
of accounting information systems. Two groups of experimental participants interac-
tively developed Structured Query Language (SQL) queries to answer ten business
questions. The control group (n = 28) used data stored in a traditional relational
schema. The experimental group (n = 31) used the same data stored in an OO schema
that included GSHs and ADTs. Both schemas implemented the same database ac-
counting model of the sales cycle of a hypothetical company. Participants using the
higher abstraction (OO) schema with GSHs and ADTs made fewer semantic errors than
did participants using the traditional relational schema. The OO participants also re-
quired less time to formulate their queries. These results have several important impli-
cations. First, relational database vendors should continue, if not accelerate, their ef-
forts to incorporate OO features such as GSHs and ADTs into their database systems.
Second, users of accounting information systems need to improve their understanding
of the impilications of various data structures on their interactive queries. Third, research
should investigate the effects of other abstraction mechanisms, including classification/
instantiation and aggregation/decomposition, on query performance.

Keywords: accounting information systems; database management systems; object-
orientation; abstraction; human-computer interaction; query performance;
information retrieval.

We thank participants and reviewers at the 2000 American Accounting Association Annual Meeting, the 2004
Midyear Meeting of the Information Systems Section of the American Accounting Association, and workshop
participants at the University of Queensland (UQ). We especially appreciate the insightful comments of Peter
Clarkson, Cheryl Dunn, Colin Ferguson, Greg Gerard, Jon Heales, Martin Putterill, Ron Weber, the Associate
Editor, and two reviewers. Bill McCarthy and Ted Mock provided invaluable assistance and suggestions during the
inception of the research. Jim Hansen, David Harvey, Tim Lehmann, Cheryl Lim, and Ray Meservy assisted with
the conduct of the research and the coding of the data. The Director of Research at Southern Cross University
provided financial support to Professor Debreceny. Professor Bowen received financial support from the UQ Busi-
ness School Research Fund.

43

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyypy

44 Debreceny and Bowen

L. INTRODUCTION

n order to better fulfill their goals, a wide range of organizations have made significant
Iinvestments in complex computerized repositories of organizational knowledge includ-

ing accounting and enterprise information systems and data warehouses. Increasingly
managers and other decision makers are empowered to retrieve and interpret information
directly from these data repositories to support their work (Speier and Morris 2003; Wixom
and Watson 2001). To increase the effectiveness and efficiency of the information retrieval
processes, these organizations have made substantial investments in query interfaces and
datamining tools (Cooper et al. 2000). Accurately retrieving information depends, however,
not only on the quality of the data extraction tools, but also on the structure of the data
the decision makers access (Borthick et al. 2001; Bowen and Rohde 2002; Bowen et al.
2004; Kimball and Ross 2002).

Research in cognition, linguistics, and psycholinguistics shows that humans use abstrac-
tion mechanisms it facilitates their classification of knowledge domains, promotes etfective
problem solving, and aids information retrieval (Lakoff 1987; Langacker 1999; Simon
1996). Humans use abstractions to recognize the similarities between objects, conditions,
processes, and actions, and to temporally suppress their differences. Conceptual models of
information systems employ abstraction mechanisms to produce more direct and natural
representations of the ‘““subject world” (Hammer and McLeod 1981; Jarke et al. 1992
Mylopoulos 1998). The four primary abstraction mechanisms generally recognized in con-
ceptual modeling are (1) classification/instantiation; (2) aggregation/decomposition; (3)
generalization/specialization, and (4) grouping/individualization (Mattos 1988; Taivalsaari
1996).

A major thrust in software engineering and computer applications over the last three
decades has been the development of the object-oriented (OO, or object) paradigm. In large
measure, the object paradigm seeks to reduce design and query complexity by directly
employing abstraction mechanisms. For example, in the realm of database management
systems (DBMSs), proponents of object databases assert that these databases reduce the
mismatch between organizational processes and the implementation of business solutions
by providing support for abstraction mechanisms (Cattell 1994; Loomis 1995; Stonebraker
et al. 1999). OO databases typically incorporate generalization-specialization hierarchies
(GSHs) and abstract data types (ADTs) as implementations of the generalization/speciali-
zation and grouping/individualization abstraction mechanisms, respectively.

The dominant model for commercial database management systems over the last several
decades has, however, been the relational model (Date 2004). The relational model has a
strong theoretical foundation in set theory (Codd 1970, 1990). Relational researchers have
used this foundation to enhance and extend the relational database model in many areas
such as integrity, security, concurrency control, and distributed processing (see, e.g., Bayer
et al. 1980; Bell 1992; Buneman and Clemons 1979; Castano et al. 1995; Ceri et al. 1994,
Franaszek et al. 1992). Relational advocates (e.g., Date 2004) argue that providing full
support for domains in relational database management systems would align those systems
with the aims of proponents of the OO paradigm. For example, domains, also called types,
are a set of values. Although domains include primitive data types such as integer and
character, they can also include data types such as colors or multiple attributes such as the
concatenation of the components of an address (Date 2004, 111). One perspective on ADTs
is that they are a subset of domains. Developers of relational DBMSs have increasingly
incorporated OO functionality, including support for GSHs and ADTs, into their prod-
ucts. These hybrid databases are referred to as object-relational DBMSs (Loomis 1995;
Stonebraker et al. 1999).

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

—

The Effects on End User Query Performance 45

A substantial portion of the accounting information systems research into database
accounting systems has focused on the use of conceptual modeling techniques and ap-
proaches to designing database accounting systems (David et al. 2002; Dunn and Grabski
2002). Little evidence exists, however, on the effects of employing abstraction mechanisms
in database accounting systems on end-user query performance (Dunn and Grabski 2002).
This research investigates whether abstraction mechanisms benefit information retrieval
tasks (Jarke et al. 1992). In this study, we experimentally tested whether incorporating GSHs
and ADTs into database accounting information systems improves end-user query perform-
ance. Researchers have encouraged the use of experiments to provide richer insights into
the general results provided by analytical and design-science research (see, e.g., Dunn and
Grabski 2002; Wand and Weber 2002; Weber 2002). To conduct the research, we used a
commercially available object-relational database management system (DBMS) to create
schemas of the same database accounting system but with different levels of abstraction.
The high-abstraction (object) schema included both GSHs and ADTs. The low-abstraction
(traditional relational) schema included neither GSHs nor ADTs. System end-users queried
the schemas to satisfy a set of ten information requests. We measured performance on two
dimensions: effectiveness (query accuracy) and efficiency (time spent). The results showed
that users of the higher abstraction (object) schema were more effective, i.e., made fewer
errors, than users who queried the lower abstraction (relational) schema. Indeed, compared
with users of the relational schema, users of the object schema made just over half the
number of semantic errors. Object schema users were also more efficient; i.e., they required
less time to compose their queries.

II. HYPOTHESIS DEVELOPMENT
Cognition and Abstraction Mechanisms

The key issue addressed in this study is how to improve the fit between information
system design and use in the presence of human cognitive limitations (Jones and Eining
1996; Kim et al. 2000; Rose 2002; Weber 2002). In particular, we focus on end-users’
directed information retrieval from an accounting information system. This task is chal-
lenging as it requires combining knowledge of accounting structures with information re-
trieval techniques (Bouwman and Bradley 1997, Libby and Luft 1993). Theories in cog-
nition and reasoning allow us to make predictions on the way problem solvers will interact
with information systems that exhibit different characteristics and functionalities. Chunking
and categorization theories are closely related theories that make assertions about how
experts retrieve information from and process information in short- and long-term memory
(Chase and Simon 1973; De Groot 1978; Miller 1956; Newell and Simon 1972). Chunking
is a method of organizing information by grouping items together in a meaningful way.
Chunking theory asserts that experts organize their mental chunks both hierarchically and
semantically.

Chase and Simon (1973) postulated that chunks might be linked together in a hierar-
chical framework. Subsequent research has shown that experts do indeed maintain a large
number of chunks that are indexed by a discrimination net (Gobet 1998; Gobet and Simon
1996). This discrimination net has strong hierarchical characteristics that allow experts to
associate a perceived chunk with a particular leaf node in the organization of their memory.
Competing theories, including the levels-of-processing theory (Craik and Lockhart 1972)
and the connectionistic model (Rumelhart 1994; Rumelhart and Ortony 1977), also em-
phasize the importance of experts’ superior ability to construct efficient semantic networks

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

46 Debreceny and Bowen

via hierarchical structures.! Evidence for the efficacy of employing hierarchical semantic
structures is found in many disciplines including chess and physics (Gobet 1998). Hierar-
chical models have proven productive in a range of information technologies. For example,
in researching computer interfaces, Mynatt (1997) investigated the transformation of graph-
ical user interfaces into auditory interfaces for blind users. She hypothesized that, when
comparing spatial, hierarchical, and conversational models, a hierarchical model best cap-
tures the underlying structure of the graphical interface. Her experimental investigation
confirmed her assertion. Similar superior results for hierarchical structures are also observed
in human interaction with hypertext (Simpson and McKnight 1990; van Nimwegen et al.
1999; Wright and Lickorish 1990).

An important component in chunking is categorization where problem solvers recognize
the similarities within groups of elements and classify those groups in well-defined semantic
structures (Murphy and Medin 1985; Rosch 1973; Wisniewski and Medin 1994). Recent
research shows that problems solvers are not only able to learn and apply integrated cate-
gories, but are also capable of discerning the causal relationships between categories (Ahn
1998; Rehder 2003). In summary, chunking theory and categorization theory show that
grouping together related elements aids learning and problem solving at both the automatic
(perceptual) and deliberate (goal-oriented) levels. Hierarchies and categories are both ex-
amples of problem solvers employing abstraction mechanisms to overcome the complexity
in the problems they face.

Generalization-Specialization Hierarchies

Generalization-specialization hierarchies (GSHs) model class/subclass structures via
hierarchical tree structures (Smith and Smith 1977). Classes are groupings of objects with
“similar properties, common behavior, and common relationships to other objects and com-
mon semantics” (Rumbaugh et al. 1994, 24). Object classes inherit data and behavioral
aspects of more general classes and, in turn, provide data and methods to more specialized
classes. Where needed, subclasses can add or modify properties or characteristics, i.e., allow
specialization (Taivalsaari 1996, 439). GSHs assist human understanding of data structures
and database design processes by pushing complexities, e.g., differences, down to appro-
priate levels in the tree structure (Taivalsaari 1996, 442).

Semantic database models often include capabilities to represent generalization-
specialization hierarchies. For example, the Extended Entity-Relationship (EER) model pro-
vides techniques for depicting GSHs (Teorey et al. 1986). Object-oriented database systems
can implement generalization-specialization hierarchies directly. Traditional relational sys-
tems can implement the structural characteristics of GSHs only by creating additional re-
lations (Elmasri and Navathe 2003). Implementing the behavioral characteristics of GSHs
within the relational paradigm requires a combination of stored procedures, triggers, and
applications.

The economic activities of an entity can be represented by generalization-specialization
hierarchies (Adamson and Dilts 1995; Chu 1992). For example, at the highest level, all
accounting objects can be categorized as either stocks or flows (Ijiri 1967, 1975; McCarthy
1982). Stocks can be specialized into assets, liabilities, or owners’ equity. Assets, for ex-
ample, can be further specialized into asset classes on the expected cash conversion time
cycle.

! See Sloman (1998) for a contrary perspective. Sloman argues that most recognized hierarchical semantic struc-
tures are better described as particular examples of similarity or categorization.

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

The Effects on End User Query Performance 47

Figure 1 shows a fragment of a simplified schema that employs a hypothetical gener-
alization-specialization hierarchy, implemented in an object-relational database. The highest
level of the hierarchy (person) shows generic attributes that describe a person. This is
specialized in two ‘“‘subtables” for employees (employee) and sales contacts (sales._
contact). Each of these two tables automatically inherits the attributes of its parent. The
inherited attributes are shown in italics. The employee table adds a link to the department
in which employees are working and each employee’s title. The sales contact table has
added contact information and a link to the employee of the corporation that is their primary
contact. This latter attribute is a link from one branch of the GSH to another.

To retrieve information from the child levels of the GSH, the user only needs to include
the specialist table in the query. For example, if end-users were asked to ““print the full
name” of employees that work in the Southeast region, they would merely state “select
given_name, middle_name, family_name from employee where department
= ‘SE-Sales’” in their SQL query. If GSHs were not functionally available to the da-
tabase designer, then the schema would require separate and discrete tables for person,
employee, and sales_contact. The resulting SQL query would require a join and

gilven_name
middle_name
family name
date_of _birth
nationality
department
title

under person

sales_contact

FIGURE 1

Hypothetical Example of a Generalization-Specialization Hierarchy (GSH)
Tables

person

Attribute Data Type

pers_id char(8) not null primary key

given_name char (20)

middle_name char (20)

family name chax (20)

date_of_birth date

nationality char (20)

employee

Attribute Data Type

pers_id char(8) not null primary key

char(20)

char (20)

char(20)

date

char (20)

char (8) references int_org
char (20)

Attribute Data Type

pers_id char(8) not null primary key
given_name char(20)

middle name char (20)

family name char(20)

date_of birth date

nationality char (20)

date _of_ first_contact date

date_of_last_contact date

primary_ contact char (8) references employee

under person

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

48 Debreceny and Bowen

<

would be formulated as “select given..name, middle_name, family_name from
person, employee where person.pers_id=employee.emp__id and depart-
nment = ‘SE-Sales’.” This latter query is clearly more complex, requiring the end-user
to recall not only the attributes of a person’s name, but also the base person table and the
associated employee table, and specify how to join those tables together. When end-users
query a GSH they do not need to explicitly join parent (person) and child (employee)
entities, as they are required to do when querying traditional relational database schemas.
Alternatively, each child entity can be viewed as a single chunk rather than two or more
distinct entities. Further, the level of complexity of queries increases dramatically as the
depth of the GSH increases.

Formal testing of the effect of abstraction mechanisms on database accounting system
end-user performance has been limited and the results mixed (Dunn and Grabski 2002).
Dunn (1999) tested the ability of two groups of advanced undergraduate accounting students
to generate financial statements from an underlying relational database schema. One group
used a sequential interface (low abstraction). The other group interacted with a graphical
ER representation of the relational schema that included GSHs (high abstraction). Contrary
to expectations, users of the high-abstraction interface were less accurate than the users of
the low-abstraction interface. Conversely, in two experiments that tested the interaction of
end-users with REA-based accounting information systems (McCarthy 1982) and traditional
“Debit-Credit Accounting” systems, Dunn and Grabski (2000; 2001) found that the higher
semantic expressiveness of the REA model resulted in higher levels of task completion
accuracy.

Recall that hierarchical structures are a central feature of theories of cognition and
reasoning, in particular, chunking theory. Organizing data structures within a hierarchical
semantic network should exhibit higher levels of abstraction and provide better foundations
for end-user problem solving. Generalization-specialization hierarchies within the object
paradigm are examples of hierarchical semantic networks. Hierarchies allow end-users com-
posing queries to assume that attributes in the parent entity are present in any child entity.
We assert that database accounting systems that directly implement generalization-
specialization hierarchies will provide a more productive environment for end-user infor-
mation retrieval than systems that do not implement generalization-specialization hierar-
chies or implement them in a less elegant fashion. That is, we expect that employing GSHs
in database accounting system schema design will result in closer alignment of schemas
with underlying knowledge structures. This close alignment will enhance end-user’s query
performance. This performance can be measured on multiple dimensions including semantic
query accuracy (Borthick et al. 2001; Reisner 1977, 1981; Smelcer 1995) and query effi-
ciency (Jones and Eining 1996; Wu et al. 1994). Hence, the first set of hypotheses is:

Hl1a: End-users querying database accounting systems that incorporate generalization-
specialization hierarchies (GSHs) will make fewer semantic errors than end-users
querying database accounting systems that do not incorporate GSHs.

H1b: End-users querying database accounting systems that incorporate generalization-
specialization hierarchies (GSHs) will take less time than end-users querying
database accounting systems that do not incorporate GSHs.

Abstract Data Types (ADTSs)
Chunking and categorization theories show that problem solvers visualize categories of
elements in their processing of information. In the object paradigm, ADTs provide a

Journal of Information Systems, Spring 2005

_—

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

The Effects on End User Query Performance 49

grouping/individualization abstraction mechanism for building such categories. ADTs

group related information elements in a structured fashion within a single data type. In a

full OO system, an ADT may include methods that provide behavioral characteristics. ADTs

may incorporate atomic data types as well as other ADTs. Employing ADTs facilitates the

creation of elaborate taxonomies and promotes classification schemes (Cattell 1994; Loomis

1995). Figure 2 shows a fragment of a hypothetical object-relational database schema with |
two ADTS and two tables.

The address_t ADT is a contact address structure with columns for physical, tele-
phonic, and electronic addresses. The schema declares the ADT once only as address_
t. The shipdetail t ADT stores information on typical shipping data including ship-
ping dates and quantities. Tables that require address or shipping information may declare
a single column within the schema and declare that column as the appropriate abstract data
type, just as the simple string or float data types might be used for textual or numeric

FIGURE 2
Hypothetical Example of Abstract Data Types (ADTSs)

Tables
inwardsinv
Attribute Data Type
po.iid char (10) references purchorderline
po:line id char (10) references purchorderline
unitpurchaseprice dollar
shipfromdetail shipdetail_t
shipfromaddress address_t
outwardsinv
Attribute Data Type
order_id char (10) references salesorderline
order_line_id char (10) references salesorderline
unitsellingprice dollar
shiptodetails shipdetail_t
shipaddress address_t
billingaddress address_t

Abstract Data Types
shipdetail_t

Attribute Data Type
item_id char (6) references inventoryitem
req gty integer
min_gty integer
earliestshipdate date
prefshipdate date
lastshipdate date
address_t

Attribute Data Type
contactname chari(30)
addressl chaxr(30)
address?2 char (30)
cifsy chax (30)
state char (30)
zipcode char (10)
country char (30)
phone char (20)
fax char(20)
email char (30)

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

50 Debreceny and Bowen

data. In this example schema, the inwardsinv table employs the shipdetail _t ADT
as the data type of the shipfromdetail column and the address_t ADT as the data
type of the shipfromaddress column. The outwardsinv table also uses each of these
ADTs.

The benefits of ADTs flow to both the designers and the users of the schema. The
schema designers may declare an ADT and then re-use the ADT when appropriate, knowing
that they will be using consistent data structures, names, and methods. As far as users are
concerned, ADTs operate consistently across all applications within the database system in
which they are defined, thereby providing an additional level of abstraction likely to enhance
end-user query processes (Cattell 1994; Graham 2001, 18). For example, if end-users were
asked to “print the full name and address” of organizations from the schema shown in
Figure 2, then they would merely state “select name, address” in their query. If the
ADT were not available, then they would need to recall all the attributes of name and
address resulting in “select oname, odscrptn, otype, snum, sname, sdetail,
city, state, areacode.”’

Because of enhanced categorization, providing end-users with ADTs that group related
elements together should improve problem solving. Hence, we expect that database ac-
counting schemas that incorporate ADTs will enhance system end-users’ query perform-
ance. As before, we measure end-users’ query performance by semantic query accuracy
and query efficiency. Hence, the second set of hypotheses is:

H2a: End-users querying database accounting systems that incorporate abstract data
types (ADTs) will make fewer semantic errors than end-users querying database
accounting systems that do not incorporate ADTs.

H2b: End-users querying database accounting systems that incorporate abstract data
types (ADTs) will take less time than end-users querying database accounting
systems that do not incorporate ADTs.

1. METHOD
Introduction
We used a laboratory experiment to test the hypotheses. This section describes the steps
taken to design the alternative object and relational schemas, the creation of a set of infor-
mation requests, selection of participants, the management of the experiment, and the de-
pendent and independent variables.

Object and Relational Database Schema Design

To compare the competing paradigms, we created object and relational instantiations
of a small-scale database accounting system. The database accounting system models the
inventory acquisition and sales cycle for a hypothetical retailer of computer equipment.
Figure 3 shows the Extended Entity-Relation (EER) semantic model of the database ac-
counting system.

Using this EER model, we then constructed object and relational schemas, each in third
normal form (3NF). The object schema, shown in Appendix A, incorporates both gener-
alization-specialization hierarchies and abstract data types. We employ GSHs to represent
hierarchies of accounting resources and claims (assets and liabilities) and flows (revenues
and expenses). These GSH structures are (1) org with specializations ext _org and int
_org; (2) resource with specialization resource_inv; (3) resource_trans_item

Journal_of Information Systems, Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

The Effects on End User Query Performance 51

FIGURE 3
Modified Extended Entity-Relationship Model for Hypothetical Company
|

<o > e >
EED DD

resource_trans flow_trans

<o <G>
= [Dl

LresourceJrans_item | flow_trans_item |

\)
i il ol o>
j o=
Ceese

I—l

flow_inv_trans_item l

0
0
0
i

Eil

S
—

resource_inv

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

52 Debreceny and Bowen

with specialization resource_inv_trans_item; and (4) flow_trans_ item with spe-
cialization flow _inv_trans_item. We employ two relatively simple ADTs in the object
schema to represent organizational names (oname _t) and addresses (address_t). These
ADTs are reused in org and, by extension, ext_org and int _org.

Semantic constructs such as the generalization-specialization hierarchies in the EER
model in Figure 3 were not directly available when designing the traditional relational
schema. This necessitated making several design choices in modeling a semantically equiv-
alent schema. We followed the rules established by Elmasri and Navathe (2003) to translate
the generalization-specialization hierarchies in the semantic model to the traditional rela-
tional schema shown in Appendix B. For example, in the object schema the GSH structure
of resource_trans_item and its specialization resource_inv_trans.item rep-
resent inventory resource transactions. This structure is implemented by the tables
resource_non._inv._trans_item and resource_inv_trans_item to accom-
modate the bifurcation of resource transactions into inventory and non-inventory.

Although the object and relational schemas represent the same database accounting
system, the two competing schemas have different structural characteristics. The object
schema has seven general tables and five tables that specialize those general tables. The
object schema has 21 distinct attributes. In contrast, the relational schema consists of ten
tables and 30 attributes. Hence, the object schema contains two more tables but nine fewer
attributes.

Information Requests

Participants in the experiment formulated queries for information requests that are typ-
ical of those required of entry-level accountants. The design criteria of the ten information
requests were (1) to provide a range of tasks from simple to difficult across both schemas;
(2) to focus on differences associated with GSHs and ADTs, and (3) to test the participants’
understanding of the database accounting information system. Table 1 shows each of the
information requests along with the most efficient object and relational solutions.

Independent Variables—Measuring Complexity

We measured the effect of the object and relational schemas on end-user query per-
formance by observing the effects on accuracy and efficiency of the complexity associated
with the most efficient (model) object and relational queries. To assess the effects of the
experimental manipulations, we divided the complexity in each query into complexity that
arises in the object schema and the differential complexity that arises in the traditional
relational model resulting from the absence of object-oriented features.

The complexity of the model object and relational queries to solve the information
requests was measured by a program complexity metric. There are more than 100 such
metrics (Zuse 1991). Although no one software complexity metric can meet all desired
properties (e.g., reliability, comprehensibility, correctness, understandability, ease of imple-
mentation) (Fenton 1994; Weyuker 1988), the Halstead (1977) complexity metrics have
been shown to be reliable and highly correlated to other well-established complexity metrics
(Banker et al. 1993; Lind and Vairavan 1989). The Halstead complexity metrics have been
employed in a number of studies on human-computer interaction (e.g., Bowen et al. 2003).
We employ the Halstead Difficulty (D) complexity metric to measure complexity of the

Journal_of Information Systems, Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

53

The Effects on End User Query Performance

(28pd 132U UO panu1U00)

0RO
1 9Tl
Gilee i il
81 !
1S Si

67

Lol

oY

Lk

pISIwIalI

~SURI) ~AUI~ UOU ~90IN0SAI=PISI'90INOSI IO

PISIWA)I ~ SUBI} ~ AUI ~90IN0SAI=PISI"90INO0SI

QIoUM UID)I ™~ SUBI) ~ AUI~ UOU ~90INOSAI
‘WRII ™ SUBI) ~ AUI ~90IN0SAI ‘90INOSAI WOIJ
wdIosp 1ounsIp 3099

{(pL10°310~1X0=p1I10°310 10 pLIO-FIO
~JUI=pLIO"310 21oyM SI10)Xe‘SI0 Ul ‘SI0 WOIJ
PLIO"SI0 109[9S) UI JOU PLIO IoyM IO WOy
(ed£10 “mydIospo ‘oweu0)JoUnSIP 109[9S

‘. [91818], <>91B38 pPUR JSn),=odK)o pue

PLIO 10 ~1X0=pLIO"310 219yMm FI107IX2 ‘SI0 WOy
9pooBaIR ‘9Jels ‘AJI0 ‘[IeIopS

‘oureus ‘wnus ‘9d£1o0 ‘wydIospo ‘oureuo 3o9[os

{0 < JwIR[Ees pue Jsn), =adAjo pue
PLIO"5I0~1X0=pLI0"3I0 210yMm SI0~1xo‘SI0 woiy
JIWI[O[BS‘QUEBUO O[S

{31071%9 woIy
9pooeaIR ‘ABIS ‘AII0 ‘[TeIopS
‘oureus ‘wnus ‘2d£jo ‘wydiospo ‘oureuo 309[es

{PISI"90INOSAI

= PISI'UIO)I ~ SUBI) ~90INOSAI 2ISYM
W)~ SUBI) ~90INOSAI ‘90INOSI UWIOI]
wdIosp JounsIp 10979

{(810) Auo woiy
Qureu 3o97es

‘ [ore18], <> 9re)S ssaippe pue
Jsn), =adKj0-owreu oroym SI0TIXO WOIY
SSQIPPERoWRU 19[S

‘0 < JnuIR[es pue
JsnD, =adKjo-owreu aroym S10~1x0 woly
JTWI[S[BS ‘QUIRU JOJ[S

{310~)%0 woIy
SSQIppe ‘QuIeU JO9[3S

"aseqejep
9} Ul suonoesueI] Y] [[B
I0J SUOTIOBSURI} 90INOSAI
SNOLIEA U} UI pasn
U93Q 9ABY JBY) SOOINOSI
10UnsIp 9y} Jo suondrosop
3} Jo SumsI| B opIAOI]
‘s1orpddns 10 srowoisno
Jou syuounredop Ioyiou
QIe 1By} SUONBZIUBIIO
JO QuIeu 9y} INO JULIJ
[orers] ur
Juapisar JON Auedwo))
suua(oy jo sierddns
10 SISWOISND QI By}
SUONRZIUBSIO JO SSAIPpPE
pUB QWERU [[NJ Y} JULIJ
"J3S U29q Sey
iy oseyoind aanrsod
B OIYM IOJ SIOUWIOISND
9801} JO JruT] Tefjop
pUB QWEU Y} JNO UL
‘ATuo siorjddns
PUB SISWIOISND INO JO
[[® JO S[Ie1op SSaIppe pue
SOWRU A} JO IS © INO JULL]

2Lav JHSD 20

UoNN[oS [BUONIEB[AY

uonnjog 3[40

sanfep Axarduro) AJMOYJI(PeLIS[BH PUE ‘SUONN|0S ‘SILIdNY) [BjUdWILIDAX
I H19VL

1sonbay uoneurIojuy

I

#

Journal of Information Systems, Spring 2005

<
9
73
Q
£
S
@
o
=
5
<}
<
=
=
S
o}
=
£
=
oS
S
S
c
9
=
o
=
S
<}
o
S
9]
S
S
[}
<
+—
S
=
o
o
[}

(28vd 1x2u UO paNUIIU0D)

=
2 ‘oureuoe‘puoe £q dnoid
2 © (Q<junouwell pue 87-70-XXXX, Pue
= J0-C0-XXXX, Uoomjoq 21epll pue Pl
8 — SUBI) ~ AUL90INOSAI =PI SUBI) ~30IN0SAI
2 pue SI0JUI 1" SURI) ~90IN0SAI=PLIO"SI0 19yM
3 SI0‘WIo)I T~ SURI) ~ AUT ~90IN0SAI'SULRI) ~0INOSII WOIJ
m QUIBUO‘PLIO‘JUNOUIR)T 1093
w [[e uorun
(Q<junourey pue 87-70-XXXX, Pue .10-20 ‘owreuo-oweupuo £q dnoid
“XXXX, UseM1oq 21epll pue POIWI—suen™ ()<JUNOWEN pue 87-70-XXXX, PUE .10
AUL™UOU~90IN0SAI=PNI'SUBI} ~90IN0SAI PUB SI0 -70-X XXX, UsomIoq 9Jepll pue PrI Wl
~JUI~1I'SUBI) ~30IN0SQI=PLIO FI0 2I9YM FIOWII —SUBI}~90IN0SAI=PII SUBI]) ~90IN0SII (A1enIqa Jo
—SUBI)~ AUT—UOU~90INOSAI‘SURI} ~90IN0SSI WO} Pue SI0~1UI~)I'SUBI) ~30IM0SI=PLIO TI0 yuour 9y} Jo Jusuniedsp
QUIBUO‘PLIO‘JUNOWER]I J09]3S) —jur oIoUM SI0TIUISURY) yoes Kq Aueduod ay)
woIy —Q0IMOSAI‘TIS)L ~ SUBI} ~90INOSAI WOIJ 01 N JYSNOIq S90IN0sI
1 e el QUWIBUO 8‘PLIOB*(JUNOUWIRII B)WNS 109]3S SQUIRUO SWEU‘PLIO‘(JUNOWELI)WNS 109]3S €103 92U} JO ISI[B 9pPIAOI §
<G
-Z0-XXXX, PUe 20-20-XXXX, Usemieq Sjepiy
puUE pIjSUBI~MO[=PIt PUE 310 1Xo~)J'suen L SI-T0-XXXX,
—mop=puo-310 pue 239[[0) AIuUnwWWo)) PUB .. 70-70-X XXX, Uoom1aq 91epiJ
1S9M-1SBH, =oWEU0"SI0 21oyM FI0‘suen) pUE PIJ W)l ~SUBI ~ MO =pnJ'suel] [PAISN[OUI Arenigqaq GJ 01
— MO ‘e (W)L~ SUBI) ™ AUI~UOU~ MOJJ WIOIJ ~MO[} pue ,o39[[0) ANUnunuo)) ¢ woIy porrad oy) Sunmp
prjunoure)y JSOA\ -ISBH, =OWRUO SWERU pUE ..98e110D Arunwwio))
159[0S [[B UOIUN W1 —SUBI}~ AU MO[WOJJ SI07)Xe~)J'SUBI) ~ MOJ=PHOSIO AUaYM ISOM-ISeH,, 3} O} SIOIALS
PDJJuUnowe}y Jo9[es) WOy $10 ‘SUen~MO]] ‘WIS)I~SUBI)~ MO[j WOIJ JO UOISIACId puR AIOJUSAUI
G0 9 79T (Junowreij B)WNS J09[3S (qunowre))wns 109[ds JO SIS [B101 Y} IoM JBUM L
{(ST-TO-XXXX, pue
ZI-T0-XXXX, Uoomieq 23ep)j pue pnj uialt
~SUBI} T AU UOU~ MO =PJ'SURI} ™ MO} 2I19Uym
SUBI} ™ MOJJ‘UISJI — SUBI) ~ AU~ UOU ™~ MO[J TIOIY
(qunowrejj)wuns 3o9[9s uomun G|
-T0-XXXX, PUe ZI-10-XXXX, Usemiaq 91epy ‘PHysuBI T MOY =Py Wl
pUE PIJ W)L~ SURI}~ AU~ MO[J=PNJ'SULT) ~ MO} —SuBI}” MO PUe GT-T10-XXXXs» {RAISNOUI
QIoUM SUBI)~ MO W)L~ SUBI) ~ AUL~ MO[J WOIJ PUR . Z1-10-XXXX, Ua9Mm19q 91epy) ‘Arenuef G] 0} Arenuef
(Junowe)wns 109[eS) WOIJ 2IOYM SUBI ™ MO[TSI~ SUBI) ~ MOJJ WOIJ 71 woiy pouad 9y} 10]
00 -7 . CT6 (s)wns 309]3S (Junoure}j)wins }09[0S ONUIASI 810} Y} SeM JBUM O
< JLdyv JHSHY 00 uonnjos [euoneRy uognjos 33(q0 jsonbay uonewrIou] #
vy

(ponunuod) T FIIVL

er. Further reproduction prohibited without permissionyaay

Journal of Information Systems, Spring 2005

55

The Effects on End User Query Performance

*ST-T0-XXXX, PU® [0-10-XXXX,
U99M19(Q 2JBPM PUB PIMI'SUBI) ~20IN0SAI=PNI.
pUe 310 1X9T1I'SURI) ~90IN0SAI=PLIO" IO
pue ,Dd B3N, =9WEBUO IO I9YM FIO‘SueI)
~90IN0SAI ‘B (W~ SUBI) ~AUI ™~ UOU ~90IN0SAI WOIJ
pnIjunoure)r
JOJ[9S [[B UOIUN WAL~ SURI) ~AUI~90INOSAI WOIJ
PII‘JUNOWEM JO9[3S) WO
OO0 L 6i6 QT (Junowrelreg)wns Jo9[eS
((ST-T0-XXXX, PUe .[0-10-XXXX,
U99M19q 9JBpll PUB () > JUNOWEL PUB PHIISUBI)
~O0INOSAI=PIII WA}l ~ SUBI) ~AUI ~90INOSAI I9YM
SUBI) ™~ 90INOSI W)~ SURI) ~ AUI~90IN0SAT WOIJ
(Junowrelr)wns J09[9s uoIun GJ-10-X XXX, pue
J0-TO-XXXX, Ueomioq ajeply pue pnysuen
~ MO =PNJ WIJI ~SUBI) ~ AUIUOU ~MO[J 2I9Uym
SUBI)~ MO[J ‘W)~ SUBI) ~ AUL~UOU ™~ MO[WOIJ
(Junowreyy)wins 3097
uorun
S1
“10-XXXX, PUe . JO-T0-XXXX, Uoom}oq a1epiy
pue POy SueI)~ MO =PNJ W)~ SUBH ~AUI~ MO}
QIoUM SUBI)~ MO[TU)I ~ SURI} ~ AUI~ MO} WOIJ
(Junowrejy)wins 399[9S)
woly
00 el 81T (s)uns 309738

*ST-T10-XXXX, PUe .10
“10-XXXX, UooMm]oq 18Pl pue PIiI ol
~SUBI}~90IN0SAI=PI)I SUBI) ~90IN0SAI
PUE PLIO°3I0TIX0=3I10")Xo ")I'suen
~90IN0SAI pue ,DJ LI, =OWERUO QWEU
QIoUM SIO0TIXo W)
~SUBI) ~Q0INOSAISUBI) ~90INOSI UIOI]
(Junowrelr)wns Jo9[as

((.ST-10-XXXX, Pue .10-10

-XXXX, U9om1aq 9Jepij pue prj-suer

~ MO =PI W)~ SUBL ~AUI~ MO[} 2IoyM
SUBI) ~ MO W)L~ SURI) ~ AUI~ MO[WOIJ

(Junowrelr)wuns

109[es worun CT-10-XXXX,

PUB J0-TO-XXXX, Uoam)aq djeplj pue

PLJ SuRI) ~ MO =PI} W)~ SUBI} ~ MO}
QIoUM SUBI) ™ MO WU~ SUBI} ~ MOp WOIJ
(Qunowreyy)wins Jo9[2S) WOIJ
(s)wns 309[9S

(penunuod) 1 FIGVL

(ysed
ur wayj 03 pred om ey
JUNOWe Y} PRAdXa , . Dd

B39, poqred Joryddns
Ay woij Arenuef G|

01 Arenuef | woij porrad
9y} Sump paxmnboe om
ey} AIOJUQAUT JO junowre

oy pIp yonuwr moy £g (1

(Arenuer
GI 0 [woiyj porrad oy
107 1goxd 10U Y SeM JBUM 6

Journal of Information Systems, Spring 2005

<
9
73
Q
£
S
@
o
=
5
<}
<
=
=
S
o}
=
£
=
oS
S
S
c
9
=
o
=
S
<}
o
S
9]
S
S
[}
<
+—
S
=
o
o
[}

56 Debreceny and Bowen

model solutions to each information request.> The calculation of the Halstead Difficulty (D)
complexity metric is described in Appendix C.

We take the level of the complexity of the object query (Object Complexity [OC]) to
represent the underlying complexity of each information request. The difference between
the complexity of the object query and the complexity of the relational query is the Marginal
Relational Complexity (MRC). MRC is decomposed into the effect of added complexity in
the relational schema arising from the absence of abstract data types (ADTs) and from the
absence of generalization/specialization hierarchies (GSHs). ADT Complexity (ADTC) is
that part of MRC that arises from the absence of ADTs in the relational schema. GSH
Complexity (GSHC) measures the remaining component of MRC attributable to the absence
of generalization-specialization hierarchies in the relational schema. Equations (1)—(6) de-
fine these relationships:

OC, = Difficulty of the model OO query for information request i
(i = 1to 10); (1)
RC, = Difficulty of the model traditional relational query for information
request i (i = 1 to 10);)
MRE, = =:RC, —0C; 3)
OCGSH, = Difficulty of an OO query for information request i using only

generalization-specialization hierarchy functionality (i.e., using

no ADTs) i (i = 1 to 10); 4)
ADTC, = OCGSH, - OC;(i = 1 to 10); and ()
GSHC; = MRC,; - ADTC,(i = 1 to 10). (6)

GSHC is always greater than or equal to zero because queries on a schema that employs
GSHs are either identical to queries on an equivalent schema under the traditional relational
model or reduce the number of tables to be joined, thereby reducing query complexity.
ADTC is always greater than or equal to zero because queries on a schema that employs
ADTs are either identical to queries on an equivalent schema under the traditional relational
model or retrieve a collection of attributes, thereby reducing query complexity. The model
queries for each information request using the traditional relational and the object schema
shown in Table | confirm these relationships.

For example, the third information request asks users to retrieve name and address
information for specified classes of external organizations. The most efficient solution for
this information request made under an object schema that employs both GSHCs and ADTs
is:

select name, address
from ext_org where name.otype=‘'Cust’ and address.state <=
Vistakel

Here the user extracts the information directly from the child table “ext_org” that
specializes the parent “org” table. This is the most efficient of the three queries (object,
object without ADT and traditional relational) (OC = 4.6). If the ADT “address_t”
were not available in the schema, then the user would need to set out the full elements of
the name and address attributes subsumed in the ADT. The resulting query would be:

2 In this study the pair-wise correlation of the Halstead Difficulty and Lines of Code complexity metrics for the
object queries shown in Table I was 0.880 (p < .001). The corresponding correlation for the relational queries
was 0.843 (p < 0.01). We uscd the Lines of Code counting rules for query languages developed by Chan (1999).

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

The Effects on End User Query Performance 57

select oname, odscrptn, otype, snum, sname, sdetail, city, state,
areacode
from ext_org where otype="'Cust’ and state <> ' [state]’;

The loss of the ADT increased the complexity of the query (ADTC = 4.9). In the
traditional relational schema, neither GSHs nor ADTs are available. The user must spell
out the name and address attributes and additionally join the parent (org) and child (ext
_org) tables.

select oname, odscrptn, otype, snum, sname, sdetail, city, state,
areacode

frem org, ext _org

where org.orid=ext_org.orid

and otype=‘'Cust’

and state<> ! [state] *;

This query was the most complex, as a result of the additional table and the required
join resulting from the absence of the GSH (GSHC = 4.7).

Dependent Variables

Each set of hypotheses examines two dependent variables: accuracy, defined as the
number of semantic errors made by the participants (ERRORS), and efficiency, defined as
the number of minutes spent on each information request (TIME). The unit of analysis was
each participant’s final attempt on each of their completed information requests.

When end-users interact with a query processor, they may make either syntactic or
semantic errors. Although analyzing syntactic errors is of interest relative to end-user query
efficiency, the DBMS detects and reports those errors. Conversely, the query processor does
not automatically detect semantic errors. Because end-users may base decisions on output
generated by queries containing semantic errors, the level of these errors is the best measure
of how well each end-user interpreted the information request. Direct measurement of
semantic errors made by end-users in their interaction with an information system is a well
accepted method in research on human-computer interaction in general and on the effects
of levels of abstraction in particular (Jih et al. 1989; Reisner 1977, 1981; Smelcer 1995;
Wu et al. 1994),

Two researchers determined and recorded the semantic errors made on each partici-
pant’s final attempt for each information request (ERRORS). The researchers employed a
set of nine coding rules to determine the nature and class of the errors. The errors were
categorized as affecting an element of the SQL language, including the SELECT, FROM,
WHERE JOIN, WHERE CONDITION, GROUP BY, and HAVING clauses. For example,
the final query of one participant in response to the second information request (see Table
1) was:

select name, salelimit
from ext_org
where org.purchlimit < 0;

As compared with the most efficient (model) solution shown in Table 1, the participant:
(1) failed to include ‘name.otype="Cust” thereby generating a missing WHERE CON-
DITION, (2) used ‘purchlimit’ instead of ‘salelimit’ employing a misspecified table
in the WHERE CONDITION and (3) used ‘<‘ instead of ‘>° employing a misspecified
operator in the WHERE CONDITION. After coding each query, the researchers compared

Journal of Information Systems, Spring 2005

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

58 Debreceny and Bowen

their results and resolved any differences thereby ensuring complete inter-rater reliability.
The time-stamps recorded by the automated computer logs were the source of time taken
for each information request (TIME).

Model

To test the hypotheses we analyzed the effects of GSHC and ADTC on the two metrics
for end-user performance, i.e., ERRORS and TIME (see Equation (7)). The values of GSHC
and ADTC are zero for each of the ten object queries, but take on the values shown in
Table 1 for the ten relational queries. In other words, the added complexity of the relational
queries is decomposed into those elements arising from the absence in the relational schema
of generalization-specialization hierarchies and abstract data types. The model includes OC
as a covariate.

ERRORS or TIME = B, + B,(GSHC) + B,(ADTC) + B4(OC) + «. (7)

Participants

Participants were 59 students in an advanced accounting information systems (AIS)
course at a major research university. The pre-requisites for the subject included basic
accounting subjects and an introductory information systems or equivalent computer science
subject. The AIS course strongly emphasized database design and the relational model. In
addition, the course covered material on control systems and accounting cycles. All partic-
ipants received cxtensive training in SQL including over 2.5 hours of instruction over
several in-class lectures. Furthermore, the participants had completed two two-hour SQL
laboratory quizzes before attempting this experiment. The participants each received $20.00
for taking part in the experiment.

An information systems expert ranked the participants according to their information
systems experience, education, and GPA. These rankings were used to create two equivalent
groups, i.e., the highest ranked student was assigned to group A, the next highest to group
B, followed by B, A, A, B, B, etc. A coin toss determined the assignment of the two groups
to either the OO or relational group.

The primary requirement for choice of participants in this experiment was twofold.
First, participants were required to have an understanding of database principles and, in
particular, practical knowledge of SQL. Second, participants had to have knowledge of
fundamental accounting relationships. The probability of finding a sufficient number of
accessible individuals with such a combination of skills in the business or professional
realms is low. Further, as the queries did not require participants to exercise judgment
requiring significant experience in the accounting profession or commercial activities, stu-
dents were appropriate surrogates.

Experimental Task

For two hours, the participants interactively queried either the object schema or the
relational schema and performed the same information retrieval tasks based on the same
application domain. At the beginning of the experimental session, participants received a
brief description of the hypothetical company, an EER diagram of the database schema, a
text specification of the tables and the attributes in each table, and the same ten information

Jowrnal of Information Systems, Spring 2005

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

The Effects on End User Query Performance 59

requests. The materials also included brief reminders about EER graphical techniques, da-
tabase accounting systems, and SQL query syntax. The participants’ interaction with the
database was logged both at the workstation and at the server.?

The interface exhibited high realism in that participants received actual query results
from the system, e.g., syntax errors, number of records found, and the content of those
records.* Furthermore, participants could revise and resubmit their queries as many times
as they wished.

IV. RESULTS
Demographic Influences

The participants in the study had an average (standard deviation) of 5.4 (27.6) months
of relevant work experience. The participants had completed an average (standard deviation)
of 2.2 (0.8) computing subjects prior to undertaking this course. There was no statistical
difference between the treatment groups on these demographic variables or on other dem-
ographic variables such as GPA, age, or gender.

Descriptive Statistics

As there was a fixed time for the experiment, the number of queries attempted by
participants varied. The object and relational group completed, on average, the same number
of queries (6.8). The dispersion for the object group (SD = 2.2) was higher than that of
the relational group (SD = 1.4). Panel A of Table 2 shows the experimental results for
semantic errors (ERRORS) and time taken (TIME). As expected, the object group made
fewer errors (42 percent fewer) and took less time per question (7 percent less time) than
the traditional relational group.

Panel B of Table 2 breaks down these overall results to show the mean and standard
deviation of the ERRORS and TIME for each of the information requests. The object group
had lower errors on eight of the ten information requests.® In general, as the information
requests became more complex, the relational group took increasingly more time than the
object group in completing each information request. Panel C of Table 2 lists the mean and
standard deviation of the semantic errors by SQL clause. The object group made signifi-
cantly fewer errors on six of eight clauses.

Test of Hypotheses

We tested the model (Equation (7)) set out in the previous section with OLS linear
regression. Panel A of Table 3 shows the descriptive statistics for the dependent and in-
dependent variables. We hypothesized that employing GSHs in the object database schema
would improve subjects’ query accuracy (Hla) and efficiency (H1b). Panel B of Table 3

* Both object and relational groups interacted with the Illustra object-relational database management system
(Stonebraker et al. 1999).

* Many previous tests of query performance used pencil and paper or simulations that did not provide actual query
results to participants (see, e.g., Chan et al. 1993; Jih et al. 1989; Rho and March 1997; Suh and Jenkins 1992).

* Similarly, the means were significantly different for eight of the ten information requests, as measured by two-
tailed t-tests.

Journal of Information Systems, Spring 2005

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

60 . Debreceny and Bowen

TABLE 2
Descriptive Statistics

Panel A: Test of Differences of Means

Dependent Object Relational
Variable n Mean Std. Deviation n Mean Std. Deviation p*
ERRORS 213 3.45 4.13 191 5.98 4.85 000
TIME 199 8.84 7.18 184 9.54 6.94 334
Panel B: Errors and Time by Information Request
Info. Object Relational Ef{:sl;s 'tI:::I&:;(:
Request Stat. ERRORS TIME n ERRORS TIME n p? p*
1 Mean 0:59 686 29 2.20 5170w D 0.000 0.538
SD 0.9 7.96 1.32 4.23
2 Mean 207 4,10 29 157 4.04 28 0.374 0.969
SD 1.49 3.32 1,83 2.10
3 Mean 1.07 920 . 30 241 842 28 0.000 0.673
SD 1.01 783 212 593
4 Mean 2.92 1221 25 6.36 119 28 0.000 0.694
SD 2,16 10.88 2.47 7.41
5 Mean 8,18 9.05 23 4.35 1004 - 23 0.020 0522
SD 1.66 3.97 1 597
6 Mean 3l 8.92 2 9.26 14.92 29/ 0.000 0.003
SD 2.91 575 3.24 7.69
7 Mean Si82 11.84 22 11.94 9.40 16 0.000 0251
ST 4.49 7.10 3.60 4.32
8 Mean 8.18 10.69 13 15.08 14.92 12 0.005 0,128
SD 62 39 4.58 8.71
9 Mean 11.09 11329 11 14.67 17.00 3 0.290 0.332
SD 5.34 6.18 2:31 9.90
10 Mean 12.00 8.00 3 9.00 9.00 1 NA NA
SD 707 NA NA NA
Panel C: Semantic Errors by SQL Clause
Object Relational tatast
SQL Clause Mean Std. Deviation Mean Std. Deviation p*
Select errors 073 1.07 182 139 0.000
From errors 0.97 1:53 157 1.59 0.000
Where join errors 0.67 1.02 1.18 1.92 0.000
Logical operator errors — — : 0.02 0.18 0.084
Where condition errors 0.85 lills 1.10 fiisio) 0.040
Group by errors 0.12 0.64 0.15 0.40 0.581
Having errors - — 0.01 0.07 0291
Minus errors — e — e NA
View errors 0.06 0.23 0.24 0.45 0.000
Union errors 0.04 0.20 0.28 0.50 0.000
Order by errors 0.01 0.15 0.10 0.45 0.010
Total 3.45 4.13 5.97 4.85 0.000

Significance of two-tailed t-test.

Journal of Information Systems, Spring 2005

er. Further reproduction prohibited without permissionyaay

The Effects on End User Query Performance 61

TABLE 3
Regression Results

Panel A: Descriptive Statistics—Dependent and Independent Variables

Mean Std. Deviation Min. Max.
ERRORS 4.619 4.645 0.00 25.00
TIME 9.183 7.061 1.00 49.00
GSHC 3.727 5.969 0.00 21.81
ADTC 0.930 1.709 0.00 5.19
ocC 6.797 5.605 1.69 28.82

Panel B: The Effects of Generalization/Specialization Complexity (GSHC) and Abstract Data
types Complexity (ADTC) on Semantic Errors and Time Taken

ERRORS TIME

Std. Beta Std. Beta

Coefficient p Coefficient p
GSHC 0.487 0.000 0.258 0.000
ADTC —-0.091 0.010 —-0.156 0.004
ocC 0.501 0.000 0.094 0.076
n 404 383
Adj. R? 0.587 0.096

Dependent Variables
ERRORS = number of semantic errors; and
TIME = number of minutes taken to answer question.
Independent Variables
GSHC = higher query complexity in relational queries arising from absence of Generalization-Specialization
Hierarchies (GSH).
ADTC = higher query complexity in relational queries arising from absence of Abstract Data Types (ADTS);
and
OC = complexity of object query;

shows that the use of GSHs significantly reduced semantic errors, i.e., improved effective-
ness and reduced time per information request, i.e., improved efficiency.®

We predicted that the presence of ADTs in the object schema would decrease semantic
errors (H2a) and reduce the time used by participants (H2b) in completing their queries.
Panel B of Table 3 shows that the results of this experiment did not support either of these
hypotheses.’

Additional tests were conducted on the results shown in Table 3, viz.: (1) there are no indications of multi-
collinearity (mean VIF = 1.18); (2) analysis of the residuals indicates that the OLS is robust: (2) ERRORS is
measured in these regression analyses for the final attempt on each query. The reported results were confirmed
when the regression was run with errors made on all attempts on each query; (4) when separate regressions that
individually analyze the effect of GSHC and ADTC were run, the effect of GSHC was almost identical to that
shown in Table 3 but the effect of ADTC was not significant; (5) an analysis of the relationship between the
dependent variables and MRC (where MRC = GSHC + ADTC) showed significant and positive relationship with
both errors and time, and (6) a repeated measures GLM analysis undertaken on a subset of the experimental
results also confirmed the results.

Essentially identical results were observed when the regression was run only for those information requests that
used ADTs.

~

Journal of Information Systems, Spring 2005

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

62 Debreceny and Bowen

Manipulation Checks

This study tested the manipulation of the complexity of the schemas by obtaining the
experimental participants’ views on particular aspects of the schemas, including the number
of tables and the ease of use in querying the schemas. After reading the instructions but
before completing the experimental tasks, participants completed a pre-test questionnaire.
After completing the experiment, the participants completed a post-test questionnaire. The
opinions of the participants about the quality of their schema, the number of tables, and
the ease of querying provide a manipulation check on the effectiveness of the alternative
technologies. Table 4 reports the means and standard deviations of the questions in the
post-experimental questionnaire.

Table 4 does not reveal a statistically significant difference between the experimental
groups for any of the post-test questions, i.e., the manipulation checks do not provide
evidence that the participants perceived that the relational and OO schemas were signifi-
cantly different. Operationalizing concepts such as performance and complexity is difficult.
The post-test questions can provide only an indirect check of the manipulation of schema
complexity. Furthermore, because they only saw the schema to which they had been ran-
domly assigned, experimental participants had little context by which to judge if the sche-
mas they used were complex, well-designed, or had too many or too few tables.

Limitations

The study is subject to a number of limitations. First, in common with a number of
other similar studies in human computer interaction and chunking, we did not directly
measure the effect of chunk size or chunk schema structure on the human cognitive proc-
esses at work during the subjects’ completion of the experimental tasks. To do so, we would
have had to employ a procedure such as verbal protocol analysis (Ericsson and Simon 1980,
1993) to assess the manner by which the subjects interacted with the query language and
database schema. Indeed, undertaking such a procedure would be appropriate research to
follow this study. Second, the subjects may not be representative of end-users, as they are
likely to have acquired higher skills in database technology in general and in the SQL
language in particular than is typical of end-users. This limits the generalizability of the
results. Third, the experimental test is only as good as the design of the two schemas. To
allow direct comparison between the two database schemas, the relational schema must
reflect each feature in the object schema.

Furthermore, the implementation of the object features of generalization/specialization
hierarchies and abstract data types must be sufficiently straightforward for the experimental
participants to understand and be able to use the schema productively in a relatively short
time. Simplifications imposed by constraints such as these necessarily limit the external
validity of the experiment.

V. DISCUSSION AND IMPLICATIONS

This study has several important implications. First, it provides clear evidence that
increasing abstraction by incorporating the key abstraction concept of generalization/spe-
cialization hierarchies (GSHs) in database accounting schema design reduced the complex-
ity of system end-user queries. The reduced complexity leads end-users to make fewer
semantic errors and enhances efficiency. This is contrary to the results found by Dunn
(1999), but is in accord with her predictions and with the results of a broad set of studies
in the Human-Computér Interaction (HCI) research domain.

Contrary to our predictions, the classification/instantiation abstraction concept, imple-
mented as ADTs, did not result in more effective or efficient end-user querying patterns.

Journal of Information Systems, Spring 2005

_

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

The Effects on End User Query Performance 63

TABLE 4
Participant Views on Aspects of the Experimental Task
Object Relational
Std. Std. t-test
Aspect Mean Dev. Mean Dev. p*
Efficiency of querying the database with 4.200 1.096 4.036 1.551 0.433

select statements
1 = Extremely inefficient, 7 =
Extremely efficient
Effectiveness of querying the database 4.185 0.833 4.240 1.300 0.856
with select statements
1 = Extremely ineffective, 7 =
Extremely effective

Difficulty of constructing select 3.690 1.391 3.678 1.090 0.974
statements

1 = Extremely difficult, 7 = Extremely
easy

Frustration of querying the database with 3.241 11023 31593 1.423 0.645

select statements
1 = Very frustrating, 7 = Not at all

frustrating
Number of tables in the database 4.931 1.066 5.035 0.922 0.694
1 = Too few, 7 = Too many
Overall quality of the database schema 4.107 1.25% 4.071 1.438 0.922

1 = Very poorly designed, 7 = Very
well designed

* Two-tailed t-test.

Recall that, prior to the experiment, the exclusive focus of the participants’ training was on
the traditional relational model. The lack of prior exposure to ADTs is likely to have
produced the lack of positive effects of ADTs observed in this experiment. Additional
research will be necessary to investigate the benefits arising from the implementation of
the classification/instantiation abstraction concept in database accounting schema design
and on end-user query performance.

Second, the design of database accounting systems should facilitate improved mental
mappings. The evidence from this research suggests that providing GSHs in the schema
did provide a better mapping that resulted in enhanced query effectiveness and efficiency.
The picture for ADTs is not as clear. Developing a clearer understanding of the role of
ADTs will require more research, perhaps with ADTs that are more central to the account-
ing domain. Understanding the way in which end-users bring together their knowledge of
data structures, query languages, and accounting and business ontological structures will
require research that looks inside the black box of human decision making. Making a formal
assessment of the number, size, and inter-relationships of the chunks manipulated by the
end-users as they interact with alternative schemas will be an important item on the research
agenda that flows from this study. Further, as noted in the “Limitations” subsection, em-
ploying verbal protocol analysis would seem to be a desirable component of such a research
agenda. Employing this technique would allow us to measure directly the effect of abstrac-
tion on information retrieval from database accounting systems, be they organized under

Journal of Information Systems, Spring 2005

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

64 Debreceny and Bowen

object or traditional relational paradigms. Of necessity, such studies would involve relatively
small numbers of subjects, but would still provide important insights into end-user inter-
action with database accounting systems.

Third, given the results of this study, research is needed on employing other types
of abstraction in database accounting systems, e.g., classification/instantiation and
aggregation/decomposition (Taivalsaari 1996). Employing these abstractions may push the
boundaries of current object and object-relational database accounting systems. Careful
theoretical and practical assessment of the costs and benefits of these abstractions will be
necessary.

VI. SUMMARY AND CONCLUSION

Over the last two decades, research into database accounting systems focused on the
application of semantic modeling techniques to core enterprise business processes and the
implementation of the resulting semantic models in database management systems. These
database accounting systems employ a variety of abstraction mechanisms to increase se-
mantic expressiveness, enhance database accounting schema design, and empower system
end-users. Research in cognition and learning, including chunking and category theories,
provides support for the positive effects of increasing abstraction on human problem solv-
ing. However, there has been only limited empirical testing of the effect of increasing
abstraction levels on the performance of end-users’ interaction with database accounting
systems.

At the same time, there has been an ongoing debate on the ability of databases to
employ abstraction mechanisms. The dominant database paradigm is the relational model.
This class of databases draws on a strong theoretical foundation in set theory and, over the
years, has generated significant implementation improvements in areas such as performance
and security. An alternative perspective comes from object-orientation (OO). The propo-
nents of this paradigm point particularly to the direct support in object databases for key
abstraction mechanisms.

This paper reports the results of an experiment that tested the effects of including two
abstraction mechanisms in database accounting systems. We tested the inclusion of
the aggregation/decomposition abstraction with generalization/specialization hierarchies
(GSHs) and the grouping/individualization via abstract data types (ADTs). As hypothe-
sized, we found that employing GSHs improved end-user performance as measured by the
number of semantic errors made and time taken. Contrary to our predictions, employing
ADTs did not improve end-user performance in the experimental setting described in this
papet.

A considerable number of interesting research questions flow from this study. Further
research will help us better understand the application of abstraction mechanisms to data-
base accounting systems. In addition to the opportunities identified by Dunn and McCarthy
(1997), Dunn and Grabski (2002), and David et al. (2002), researchers and practitioners
are likely to gain benefits from research that investigates enhancements to modeling tech-
niques, relational, object-relational and “pure” object database systems, and more effective
query construction using these systems. One possible research project would be to examine
the relationship between modeling business processes and employing ADTs in accounting
information systems schema design. Another research task could seek to increase our un-
derstanding of and enhance end-users’ abilities to assess correctly the accuracy of their
queries as they interact with accounting information systems.

A further strand of research that flows from this study is the effect of alternate query
interfaces and languages, more sophisticated user-defined data types, and the application of

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyay

—

The Effects on End User Query Performance 65

methods and views. For example, there is evidence that query languages that use higher
levels of semantic representation (Chan et al. 1994; Chan 1995) or offer graphical interfaces,
e.g., QBE (Yen and Scamell 1993), are more productive than SQL. What query interface
and language characteristics would best facilitate end-user queries of database accounting
systems? Abstract data types can include temporal, text, graphics, and multimedia data-
types. When and how should database accounting systems incorporate these ADTs? The
role of views in relational, object, and object-relational data models is an important research
question (Kim and Kelley 1995; Kotz-Dittrich and Dittrich 1995; Kung 1990). Because
views can dramatically alter the complexity of end-user queries, such research is likely to
provide substantial benefits to designers of database accounting systems.

Abstract Data Types

APPENDIX A
Object Schema

oname_t
Attribute Data Type
oname char (30)
odscrptn char (30)
otype char (8)
address_t
Attribute Data Type
snum char (5)
sname char(30)
sdetail ehat (20)
ety char (30)
state char (30)
zipcode char (10)
Tables?
org
Attribute Data Type
orid char (6) not null primary key
name oname._t
address address_t
ext__org
Attribute Data Type
orid char (6) not null primary key
name oname__t
address address_t
purchlimit dollar
salelimit dollar
under org
int_org
Attribute Data Type
QrBdl char (6) not null primary key

8 Rows that have been inherited from parent tables are shown in italics.

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

66

name
address
under org

resource
Attribute
rsid
dscrptn

resource_inv
Attribute
re1d

dscrptn
unitmsre
under resource

resource_trans
Attribute

rtid

rtdate
rbuext__org

vl dnt ore

resource_trans_item
Attribute

Eitid

rtamount

refid

resource_inv_trans_item
Attribute

wkid

rtamount

rtaty

under resource_trans_item

flow
Attribute
flid
decrptn

flow_trans
Attribute
e el
ftdate
tt.oext _org
ft_int. ory

flow_trans__item
Attribute

ftid
ftamount
flid
Journal of Information Systems, Spring 2005

;.".;'l_',‘L..‘;'.:...a}'J Zy L—* I

Debreceny and Bowen

oname_t
address_t

Data Type

char (6) not null primary key
char (30) not null

Data Type

char(6) not null primary key
char (30) not null
char (8) not null

Data Type
char (6) not null primary key
date

char (6) references ext_org
char (6) references int_org

Data Type

char (6) references resource_trans
dollar
char (6) references resource

Data Type

char (6) references resource_trans
dollar
integer

Data Type

char (6) not null primary key
char (30) not null

Data Type

char (6) not null primary key
date

char (6) references ext_org
char (6) references int_org

Data Type

char (6) references flow_trans
dollar
char (6) references flow

. Further reproduction prohibited without permissionyypy

The Effects on End User Query Performance

flow_inv_trans_item

67

Attribute Data Type
Ftid char(6) references flow_ trans
ftamount dollar
flid char (6) references flow
gty integer
nrtid char (6) references resource_ trans
rtamount dollar
rtaty integer
under resource_inv_trans_item, flow_trans_item
APPENDIX B
Relational Schema
org
Attribute Data Type
Gligak sl char (6) not null primary key
oname char (30)
odscrptn char (30)
otype char (8)
snum char(b)
sname char (30)
sdetail char (20)
Gty char (30)
state char (30)
zipcode char (10)
ext_org
Attribute Data Type
o char (6) not null references org
buylimit numeric (12s2)
salelimit numeric (12, 2)

primary key (orid)

int__org
Attribute Data Type
orid char (6) not null references org

primary key (orid)

resource
Attribute Data Type

rsid char (6) not null primary key
dscrptn chari(30) not null

isinvflag char (i)

unitomsre char (8)

resource__trans

Attribute Data Type

et char (6) not null primary key
rtdate date

BE - ext. _orag
B Tnt org

char (6) references ext_org
char (6) references int_org

resource_non_inv_trans_item

Attribute Data Type
rEng char (6) references resource_trans

Journal of Information Systems, Spring 2005

er. Further reproduction prohibited without permissionyaay

68

rtamount
rsid

resource_inv_trans_item
Attribute

B

rtamount
rsid
rogty

flow
Attribute
flid
dscrptn

flow__trans
Attribute
THslel
ftdate
tt-ext _org
il dnt- org

flow_non_inv_trans_item
Attribute

frad

ftamount
flid

flow_inv__trans__item
Attribute

Ef il

ftamount

flid

ftaty

rtid
resource_trans

Debreceny and Bowen

numeric(12,2)
char (6) references resource

Data Type

char (6) not null references
resource_trans

numerie (12,2)

char (6) references resource
integer

Data Type

char (6) not null primary key
char (30) not null

Data Type

char (6) not null primary key
date

char (6) references ext_org
char (6) references int_org

Data Type

char (6) not null references
flowtrans
nlmerd @19 2))

char (6) not null references flow

Data Type

char (6) not null references
flow_trans

numeric (12,2)

char (6) not null references flow

integer
char (6) not null references

APPENDIX C

Halstead Difficulty (D) Complexity Metric

The Halstead Difficulty (D) complexity metric is based on four measures derived di-

rectly from the query:

nl = the number of distinct operators (e.g. ‘and’ ‘or’ >°);
n2 = the number of distinct operands (e.g. ‘dscrptn’ ‘resource_trans’);

N1
N2

the total number of operators; and
the total number of operands.

From this are derived the following measures:

Program vocabulary
Program length
Program volume

n =nl+n2
N =NI1 + N2
V =Nlog, n

Journal of Information Systems, Spring 2005

oo gl ik

er. Further reproduction prohibited without permissionyaay

The Effects on End User Query Performance 69

Potential (minimum) program length M =5

Potential volume V#* =1 log, M
Program level 1L

Difficulty D =1/L =V/V*

For example, the Halstead Difficulty complexity metric for the object and relational
solutions to the fifth information request, shown in Table 1, is calculated as follows:

Calculation of the Halstead Difficulty Complexity Metric

Item Notation Definition Relational Object
Distinct Operators nl 9 8
Distinct Operands n2 5 4
Total Operators NI 14 9
Total Operands N2 12 7
Program vocabulary n nl + n2 14.0 12.0
Program length N N1 + N2 26.0 16.0
Program volume \Y% N log, n 99.0 57.4
Potential (minimum) program length M 9 5.0 5.0
Potential volume AWl 7 log, 7 11.6 11.6
Program level I V#/V 0.1 0.2
Difficulty D 1/L 5.9 4.9
APPENDIX D
Semantic Errors Counting Form
Subject: ’
Question: I
Text and Server
Feedback:

Attempt L2 s iAol 789 1o Totdl
Select NSL

ECI

ECO

MCL

MSE

DTM

DTE

ADT
From NFM

ETL

MTL

IHY
Where Join LOJ

NIN

JAT

JOP

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay

70 Debreceny and Bowen

Subject: |

Question: |

Text and Server
Feedback:

Attempt 10 2| 3145 L6 7.8 | %86 lowl
JTB
EIN
MIN
Where Condition NINC
JATC
JOPC
JTBC
EINC
MINC
Logical Operator LEOP
Group By NGB
GAT
GOP
GTB
GEA
GMA
GLO
Having NHV
HAT
HOP
HTB
HEA
HMA
HLO
Order By ODR |
NOR |
0AM |
OEX
WAO
WDN
View EV
MV
Union EU
MU

Journal of Information Systems, Spring 2005

o)Ll zyL—ﬂ}'!

_—

er. Further reproduction prohibited without permissionyaay

The Effects on End User Query Performance 71

REFERENCES

Adamson, . L., and D. M. Dilts. 1995. Development of an accounting object model from accounting
transactions. Journal of Information Systems 9 (1): 43-64.

Ahn, W. K. 1998. Why are different features central for natural kinds and artifacts? The role of causal
status in determining feature centrality. Cognition 69 (2): 135-178.

Banker, R. D., S. M. Datar, C. F. Kemerer, and D. Zweig. 1993. Software complexity and maintenance
costs. Communications of the ACM 36 (11): 81-94.

Bayer, R., M. Heller, and A. Reiser. 1980. Parallelism and recovery in database systems. ACM Trans-
actions on Database Systems 5 (2): 139-156.

Bell, D. 1992. Distributed Database Systems. Reading, MA: Addison-Wesley.

Borthick, A. F, P. L. Bowen, S. T. Liew, and F. H. Rohde. 2001. The effects of normalization on
end-user query errors: An experimental evaluation. International Journal of Accounting Infor-
mation Systems 2 (4): 195-221.

Bouwman, M. J., and W. E. Bradley. 1997. Judgment and decision making, part II: Expertise, con-
sensus and accuracy. In Behavioral Accounting Research: Foundations and Frontiers, edited by
V. Arnold, and S. G. Sutton, 89-133. Sarasota, FL: American Accounting Association.

Bowen, P. L., and F. H. Rohde. 2002. Further evidence of the effects of normalization on end-user
query errors: An experimental evaluation. International Journal of Accounting Information Sys-
tems 3 (4): 255-290.

» C. B. Ferguson, T. H. Lehman, and F. H. Rohde. 2003. Cognitive style factors affecting

database query performance. International Journal of Accounting Information Systems 4: 251-

273.

, F. H. Rohde, and J. Basford. 2004. Ex ante evaluations of alternate data structures for end-
user queries: Theory and experimental test. Journal of Database Management 15 (4): 45-70.

Buneman, O. P, and E. K. Clemons. 1979. Efficiently monitoring relational databases. ACM Trans-
actions on Database Systems 4 (3). 368-382.

Castano, S., M. Fugini, G. Martella, and P. Samarati. 1995. Database Security. New York, NY: ACM
Press.

Cattell, R. 1994. Object-Data Management: Object Oriented and Extended Relational Database Sys-
tems. Revised edition. Reading, MA: Addison-Wesley.

Ceri, S., P. Fraternali, S. Paraboschi, and L. Tanca. 1994. Automatic generation of production rules
for integrity maintenance. ACM Transactions on Database Systems 19 (3): 367-422.

Chan, H. C., K. K. Wei, and K. L. Siau. 1993. User-database interface: The effect of abstraction
levels on query performance. MIS Quarterly 17 (4): 441-464.

, , and . 1994. An empirical study on end-users’ update performance for different
abstraction levels. International Journal of Human-Computer Studies 41 (3): 309-328,

. 1995. Naturalness of graphical queries based upon the entity relationship model. Journal of

Database Management 6 (3): 3—13.

. 1999. The relationship between user query accuracy and lines of code. International Journal
of Human-Computer Studies 51: 851-864.

Chase, W. G., and H. A. Simon. 1973. Perception in chess. Cognitive Psychology 4: 55-81.

Chu, P. C. 1992. An object-oriented approach to modeling financial accounting systems. Accounting,
Management and Information Technology 2 (1): 39-56.

Codd, E. F. 1970. A relational model of data for large shared data banks. Communications of the
ACM 13 (6): 377-387.

- 1990. The Relational Model for Database Management. Reading, MA: Addison-Wesley.

Cooper, B. L., H. J. Watson, B. H. Wixom, and D. L. Goodhue. 2000. Data warehousing supports
corporate strategy at First American Corporation. MIS Quarterly 24 (4): 547-567.

Craik, F. I. M, and R. S. Lockhart. 1972. Levels of processing. A framework for memory research.
Journal of Verbal Learning and Verbal Behavior 11: 671-684.

Date, C. J. 2004. An Introduction to Database Systems. 8th edition. Reading, MA: Addison-Wesley.

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

72 Debreceny and Bowen

David, J. S., G. J. Gerard, and W. E. McCarthy. 2002. Design science: An REA perspective on the
future of AIS. In Research Accounting as an Information Systems Discipline, edited by V.
Arnold and S. G. Sutton. Sarasota, FL.: American Accounting Association.

De Groot, A. D. 1978. Thought and Choice in Chess. 2nd edition. The Hague, The Netherlands:
Mouton de Gruyter.

Dunn, C. L., and W. E. McCarthy. 1997. The REA accounting model: Intellectual heritage and pros-
pects for progress. Journal of Information Systems 11 (1): 31-52.

- 1999. An experimental investigation of an abstraction hierarchy as a financial database in-

terface. Working paper, Florida State University, Tallahassee, FL.

» and S. V. Grabski. 2000. Perceived semantic expressiveness of accounting systems and task

accuracy effects. International Journal of Accounting Information Systems 1 (2): 79-87.

, and . 2001. An investigation of localization as an element of cognitive fit in accounting
model representations. Decision Sciences 32 (1): 55-94.

, and - 2002. Empirical research in semantically modeled accounting systems. In Re-
search accounting as an information systems discipline, edited by V. Arnold and S. G. Sutton.
157—-180. Sarasota, FL: American Accounting Association.

Elmasri, R., and S. Navathe. 2003. Fundamentals of Database Systems. 3rd edition. Boston, MA:
Pcarson Addison Wesley.

Ericsson, K., and H. Simon. 1980. Verbal reports as data. Psychological Review (May): 215-251.

, and . 1993. Protocol Analysis: Verbal Reports as Data. 2nd cdition. Cambridge, MA:
MIT Press.

Fenton, N. 1994, Software measurement: A necessary scientific basis. IEEE Transactions on Software
Engineering 20 (3): 199-206.

Franaszek, P. A., J. T. Robinson, and A. Thomasian. 1992. Concurrency control for high contention
environments. ACM Transactions on Database Systems 17 (2): 304-345.

Gobet, F, and H. A. Simon. 1996. Recall of random and distorted positions: Implications for the
theory of expertise. Memory and Cognition 24: 493-503.

. 1998. Expert memory: A comparison of four theories. Cognition 66: 115-152.

Graham, 1. 2001. Object-Oriented Methods: Principles and Practice. 3rd edition. Harlow, U.K.:
Addison-Wesley.

Halstead, M. 1977. Elements of Software Science. New York, NY: North Holland.

Hammer, M., and D. McLeod. 1981. Database description with SDM: A semantic database model.
ACM Transactions on Database System 6 (3): 351-386.

Liri, Y. 1967. The Foundations of Accounting Measurement. Englewood Cliffs, NJ: Prentice Hall.

- 1975. Theory of Accounting Measurement. Studies in Accounting Rescarch No. 10. Sarasota,
FL: American Accounting Association.

Jarke, M., J. Mylopoulos, J. Schmidt, and Y. Vassiliou. 1992. DAIDA: An environment for evolving
information systems. ACM Transactions on Information Systems 10 (1): 1-50.

Jih, W. K., D. A. Bradbard, C. A. Snyder, and N. G. Thompson. 1989. The effects of relational and
entity—relationship data models on query performance of end-users. International Journal of
Man—Machine Studies 31: 257-267.

Jones, D. R., and M. M. Eining. 1996. Articulating accounting database queries: An analysis of actual
and perceived effort. Advances in Accounting Information Systems 4: 157—180.

Kim, J., J. Hahn, and H. Hahn. 2000. How do we understand a system with (so) many diagrams?
Cognitive integration processes in diagrammatic reasoning. Information Systems Research 11
(3): 284-303.

Kim, W., and W. Kelley. 1995. On view support in object-oriented database systems. In Modern
Database Systems: The Object Model, Interoperability and Beyond, edited by W. Kim, 108-
129. New York: ACM Press.

Kimball, R., and M. Ross. 2002. The data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling. 2nd edition. New York, NY: John Wiley and Sons.

Journal of Information Systems, Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Effects on End User Query Performance 73

Kotz-Dittrich, A., and K. R. Dittrich. 1995. Where object-oriented DBMSs should do better: A critique
based on early experiences. In Modern Database Systems: The Object Model, Interoperability
and Beyond, edited by W. Kim, 238-280. New York, NY: ACM Press.

Kung, C. 1990. Object subclass hierarchy in SQL: A simple approach. Communications of the ACM
33 (7): 117-128.

Lakoft, G. 1987. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind.
Chicago, IL: University of Chicago Press.

Langacker, R. W. 1999. Foundations of Cognitive Grammar: Theoretical Prerequisites. Palo Alto,
CA: Stanford University Press.

Libby, R., and J. Luft. 1993. Determinants of judgment performance in accounting settings: Ability,
knowledge, motivation, and environment. Accounting, Organizations & Society 18 (5): 425—
450.

Lind, R. K., and K. Vairavan. 1989. An experimental investigation of software metrics and their
relationship to software development effort. IEEE Transactions on Software Engineering 15 (5):
649-653.

Loomis, M. E. S. 1995. Object Databases: The Essentials. Reading, MA: Addison-Wesley.

Mattos, N. 1988. Abstraction concepts: The basis for knowledge modeling. In Proceedings of the
Seventh International Conference on the Entity-Relationship Approach, edited by C. Batini,
331-350. Berlin, Germany: Springer-Verlag.

McCarthy, W. 1982. The REA accounting model: A generalized framework for accounting systems
in a shared data environment. The Accounting Review 57 (3): 554-578.

Miller, G. A. 1956. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological Review 63: 81-97.

Murphy, G. L., and D. L. Medin. 1985. The role of theories in conceptual coherence. Psychological
Review 92: 289-316.

Mylopoulos, J. 1998. Information modeling in the time of the revolution. Information Systems 23 (2):
127-155.

Mynatt, E. D. 1997. Transforming graphical interfaces into auditory interfaces for blind users. Human-
Computer Interaction 12: 7-45.

Newell, A., and H. A. Simon. 1972. Human Problem Solving. Englewood Cliffs, NJ: Prentice Hall.

Rehder, B. 2003. Categorization as causal reasoning. Cognitive Science 27: 709-748.

Reisner, P. 1977. Use of psychological experimentation as an aid to development of a query language.
{EEE Transactions on Software Engineering SE-3: 218-229.

. 1981. Human factors studies of database query languages: A survey and assessment. ACM
Computing Surveys 13 (1): 13-31.

Rho, S., and S. T. March. 1997. An analysis of semantic overload in database access systems using
multi-table query formulation. Journal of Database Management 8 (2): 3—14.

Rosch, E. H. 1973. Natural categories. Cognitive Psychology 4: 328-350.

Rose, J. M. 2002. Behavioral decision aid research: Decision aid use and effects. In Research Ac-
counting as an information Systems Discipline, edited by V. Arnold and S. G. Sutton, 83—110.
Sarasota, FL: American Accounting Association.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. 1994. Object-Oriented Modeling
and Design. 2nd edition. Englewood Cliffs, NJ: Prentice Hall.

Rumelhart, D. E., and A. Ortony. 1977. The representation of knowledge in memory. In Schooling
and the Acquisition of Knowledge, edited by R. C. Anderson, R. J. Spiro, and W. E. Montague,
99-136. Hillsdale, NJ: Erlbaum.

. 1994. Toward an interactive model of reading. In Theoretical Models and Processes of Read-
ing, edited by R. Ruddell, M. Ruddell, and H. Singer, 864-894. Newark, DE: International
Reading Association.

Simon, H. A. 1996. The Sciences of the Artificial. 3rd edition. Cambridge, MA: MIT Press.

Simpson, A., and C. McKnight. 1990. Navigation in hypertext: Structural cues and mental maps. In
Hypertext: State of the Art, edited by R. McAleese, and C. Green, 73-83. Oxford, U.K.:
Intellect.

Journal of Information Systems, Spring 2005

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

74 Debreceny and Bowen

Sloman, S. A. 1998. Categorical inference is not a tree: The myth of inheritance hierarchies. Cognitive
Psychology 35 (1): 1-33.

Smelcer, J. B. 1995. User errors in database query composition. International Journal of Human-
Computer Studies 42 (4): 353-381.

Smith, J., and D. Smith. 1977. Database abstractions: Aggregation and generalization. ACM Trans-
actions on Database Systems 2 (2): 105-133.

Speier, C., and M. G. Morris. 2003. The influence of query interface design on decision-making
performance. MIS Quarterly 27 (3): 397-423.

Stonebraker, M. R., D. Moore, and P. Brown. 1999. Object—Relational DBMSs: Tracking the Nexi
Great Wave. San Francisco, CA: Morgan Kaufmann.

Suh, K. S., and A. M. Jenkins. 1992. A comparison of linear keyword and restricted natural language
database interfaces for novice users. Information Systems Research 3 (3): 252-272.

Taivalsaari, A. 1996. On the notion of inheritance. ACM Computing Surveys 28 (3): 438-479.

Teorey, T., D. Yang, and J. Fry. 1986. A logical design methodology for relational databases using
the extended entity-relationship model. ACM Computing Surveys 18 (2): 197--222.

van Nimwegen, C., M. Pouw, and H. van Oostendorp. 1999. The influence of structure and reading-
manipulation on usability of hypertexts. Interacting with Computers 12 (1): 7-21.

Wand, Y., and R. A. Weber. 2002. Research commentary: Information systems and conceptual mod-
eling—A rescarch agenda. Information Systems Research 13 (4): 363-376.

Weber, R. A. 2002. Ontological issues in accounting information systems. In Research Accounting as
an Information Systems Discipline, edited by V. Arnold, and S. G. Sutton, 13-33. Sarasota, FL.:
American Accounting Association.

Weyuker, E. 1988. Evaluating software complexity metrics. IEEE Transactions on Software Engi-
neering 14 (9): 1357-1365.

Wisniewski, E. J., and D. L. Medin. 1994. On the interaction of theory and data in concept learning.
Cognitive Science 18: 221-282.

Wixom, B. H., and H. J. Watson. 2001. An empirical investigation of the success factors for data
warehousing. MIS Quarterly 25 (1): 17-41.

Wright, P, and A. Lickorish. 1990. An empirical comparison of two navigation systems for two
hypertexts. In Hypertext: State of the Art, edited by R. McAleese, and C. Green, 84-93. Oxford,
U.K.: Ablex Publishing Corporation.

Wu, C. Z., H. C. Chan, H. H. Teo, and K. K. Wei. 1994. An experimental study of object-oriented
query language and relational query language for novice users. Journal of Database Manage-
ment 5 (4): 16-27.

Yen, M. Y. M., and Scamell, R. W. 1993. A human factors experimental comparison of SQL and
QBE. [EEE Transactions on Software Engineering 19 (4): 390-410.

Zuse, H. 1991. Software Complexity: Measures and Methods. Berlin, Germany: Walter de Gruyter.

Journal of Information Systems, Spring 2005

_
Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy

